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Abstract A yeast strain Kluyveromyces sp. IIPE453
(MTCC 5314), isolated from soil samples collected from
dumping sites of crushed sugarcane bagasse in Sugar Mill,
showed growth and fermentation eYciency at high temper-
atures ranging from 45°C to 50°C. The yeast strain was
able to use a wide range of substrates, such as glucose,
xylose, mannose, galactose, arabinose, sucrose, and cellobi-
ose, either for growth or fermentation to ethanol. The strain
also showed xylitol production from xylose. In batch fer-
mentation, the strain showed maximum ethanol concentra-
tion of 82 § 0.5 g l¡1 (10.4% v/v) on initial glucose
concentration of 200 g l¡1, and ethanol concentration of
1.75 § 0.05 g l¡1 as well as xylitol concentration of
11.5 § 0.4 g l¡1 on initial xylose concentration of 20 g l¡1

at 50°C. The strain was capable of simultaneously using
glucose and xylose in a mixture of glucose concentration of
75 g l¡1 and xylose concentration of 25 g l¡1, achieving
maximum ethanol concentration of 38 § 0.5 g l¡1 and xyli-
tol concentration of 14.5 § 0.2 g l¡1 in batch fermentation.
High stability of the strain was observed in a continuous
fermentation by feeding the mixture of glucose concentra-

tion of 75 g l¡1 and xylose concentration of 25 g l¡1 by
recycling the cells, achieving maximum ethanol concentra-
tion of 30.8 § 6.2 g l¡1 and xylitol concentration of 7.35 §
3.3 g l¡1 with ethanol productivity of 3.1 § 0.6 g l¡1 h¡1

and xylitol productivity of 0.75 § 0.35 g l¡1 h¡1, respec-
tively.
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Introduction

Rising prices of crude oil coupled with increasing demand
for transportation fuel is the major constraint in the eco-
nomic development of many nations. Scarcity of fossil fuel
has led to the use of ethanol-blended gasoline (20–80%) in
Brazil and the USA. Ethanol acts as an octane booster and
minimizes carbon (CO) and nitrous oxide (NOx) emission
from tail pipes of cars [1, 15]. In this context, lignocellu-
losic biomass is favorable feedstock for ethanol production
based on life-cycle analysis of the carbon-neutral process
[15]. However, fermentation of diVerent sugars—such as
glucose, xylose, mannose, galactose, arabinose, cellobiose,
and so on, that are produced by sacchariWcation of lignocel-
lulosic biomass—to ethanol has limitations to well-known
ethanologens such as Saccharomyces cerevisiae or Zymo-
monas mobilis due to their metabolic ineYciency [7, 22].
The use of both cellulose and hemicellulosic sugars—such
as hexose, pentose, and others that are present in a typical
lignocellulosic biomass hydrolysate—is essential for the
economical production of ethanol [19, 24, 25]. Therefore,
microorganisms that are able to ferment both glucose and
xylose are required for eYcient bioconversion of biomass
to ethanol [19, 22].
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Metabolic engineering of known ethanologens by intro-
ducing essential genes expressing xylose reductase (XR),
xylose dehydrogenase (XD), and xylulokinase (XK) from
Pichia stipitis in Saccharomyces cerevisiae [12, 22];
xylose isomerase (xylA), xylulose kinase (xylB), transke-
tolase (tktA), and transaldolase (talB) from Escherichia
coli in Zymomonas mobilis [7, 34]; and pyruvate decar-
boxylase (pdc) and alcohol dehydrogenase (adh) from
Zymomonas mobilis in Escherichia coli [7, 15] has been
reported. Yet further improvements on stability of such
genetically modiWed microorganisms are required for
large-scale commercial production of bioethanol. Most of
the potential ethanologens in industrial use belong to
the mesophilic group (28–35°C), whereas thermophilic
ethanologens have certain advantages over mesophiles.
Solvent tolerance, energy saving through reduced cooling
cost, higher sacchariWcation and fermentation rate, easier
stripping of ethanol from broth, and minimum risk of
contamination are the major advantages of thermophilic
ethanologens [4, 21].

Various thermophilic bacteria such as Thermoanaerob-
acter ethanolicus [11], Thermoanaerobacterium sacchar-
olyticum [27], Clostridium thermocellum [20], and
thermotolerant yeast Kluyveromyces sp. [3–6, 9, 28] have
been used to ferment hexose and pentose sugars to etha-
nol. It is diYcult to maintain strict anaerobic conditions in
large-scale fermentations restricting the use of thermo-
philic anaerobes, whereas the facultative aerobes such as
Kluyveromyces sp. have the potential for industrial appli-
cations.

Xylitol, a sugar alcohol of the polyol family, is a natu-
rally occurring 5-carbon polyol sweetener found in fruits
and vegetables and produced in the human body during
normal metabolism [31]. It has the same sweetness and
one third the caloric content (i.e. 2.4 Kcal g¡1) of
sucrose [10, 17]. It has unique pharmacological proper-
ties such as prevention of tooth decay and ear infection
in children; it is used as a sugar substitute for diabetic
patients and in parenteral application to trauma patients
[14, 29]. A number of yeasts and molds can produce
xylitol from xylose because they possess the enzyme
xylose reductase. Candida guilliermondii [10], Candida
tropicalis [14, 16], Candida boidinii [31], Candida mag-
noliae [29], Debaryomyces hansenii [26], and Pichia sti-
pitis [13] are some of the yeasts with xylitol production
capability.

In this paper, we report isolation of the thermotolerant
yeast, Kluyveromyces sp. IIPE453 (MTCC 5314), which
ferments glucose, mannose, galactose, xylose, arabinose,
sucrose, cellobiose, and lactose to ethanol at 50°C. Further,
the strain could simultaneously ferment glucose and xylose
in a mixture to ethanol and xylitol at 50°C in a batch and
continuous process by recycling the cells.

Materials and methods

Microorganisms and culture conditions

Thermophiles were isolated from soil samples collected
from dumping sites of crushed sugarcane bagasse in Sugar
Mill. One yeast strain was selected because of its higher
sugar consumption rate and high ethanol production rate.
The yeast strain was identiWed as Kluyveromyces sp.
IIPE453, ascomycetous yeast of the fungal family Saccha-
romycetaceae, order Endomycetales, by using Biolog. For
growing the isolated strain Kluyveromyces sp. IIPE453, salt
medium (SM) was used in g l¡1, di-sodium hydrogen ortho
phosphate, 0.15; potassium di-hydrogen ortho phosphate,
0.15; ammonium sulphate, 2.0; yeast extract, 1.0; carbon
source, e.g. glucose, xylose, 10. The temperature and pH
were optimized for growth. The optimum temperature and
pH were 50°C and 5.0, respectively. The cells were grown
in 250-ml Xasks in a shaker at 50°C and 150 rpm on glu-
cose, mannose, galactose, xylose, arabinose, sucrose, cello-
biose, and lactose 10 g l¡1 each separately for 24 h. The
cells were also produced in large quantity by growing in
BioXow-110 bioreactor (ca. 2 l) on glucose and xylose. The
dissolved oxygen was optimized without control, at 20%,
40%, and 60% of saturation. The maximum growth rate
was obtained at 40% and 60% of saturation. The tempera-
ture, pH, and dissolved oxygen were controlled at 50°C,
5.0, and 40% of saturation, respectively, during the process.

Fermentation conditions

The medium for fermentation was the same as that for the
growth medium, except for ammonium sulphate 1.0 g l¡1

and carbon source, e.g., glucose, xylose as per the experi-
ment. Temperature and pH were optimized for ethanol fer-
mentation and were found to be the same as in growth.
Fermentation was carried out in 250-ml capped Xasks at
100 rpm on glucose, mannose, galactose, xylose, arabinose,
sucrose, cellobiose, and lactose 20 g l¡1 each separately for
18 h using previously grown cells of Kluyveromyces sp.
IIPE453. Batch fermentations were carried out in BioXow-
110 bioreactor (ca. 2 l) by Kluyveromyces sp. IIPE453. The
temperature and pH were controlled at 50°C and 5.0,
respectively, during the process. Fermentations were per-
formed with diVerent glucose concentrations, such as 50,
100, 200 g l¡1, diVerent xylose concentrations, such as 20,
30, 40 g l¡1, and a mixture of glucose (75 g l¡1) and xylose
(25 g l¡1). Continuous fermentation was carried out in a
BioXow-110 bioreactor (ca. 2 l) by recycling the cells, with
continuous feeding of glucose (75 g l¡1) and xylose
(25 g l¡1) mixture at a dilution rate 0.1 h¡1. Feeding of the
sugar solution was started after 18 h. The 60% of cells col-
lected by gravitational settling were recycled back into the
123
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bioreactor. The temperature and pH were controlled at
50°C and 5.0, respectively, during the process.

Analytical methods

Sugars and xylitol were analyzed by high-performance
liquid chromatography (HPLC) using High Performance
Carbohydrate Column (Waters) at 30°C with acetonitrile
and water mixture (75:25) as the mobile carrier at a Xow
rate 1.4 ml min¡1 and detected by a Waters 2414 refractive
index detector. Ethanol was analyzed by gas chromatogra-
phy using Ashco Neon II Gas Analyzer with a 2-m-long
and 1/8-in. diameter Porapak-QS column with mesh range
80/100. The sample was injected at an inlet temperature
220°C, oven temperature 150°C, and Xame ionization
detector temperature 250°C using nitrogen gas as a carrier.
Furfural and hydroxymethyl furfural were measured by
Double Beam UV–VIS Spectrophotometer 2600 at 277 nm.

Results

Among the various thermophilic and thermotolerant micro-
organisms, one yeast strain, identiWed as yeast Kluyveromy-
ces sp. IIPE453 (deposited in the Microbial Type Culture
Collection, Institute of Microbial Technology, Chandigarh
(India) with deposit no. MTCC 5314) showed growth and
fermentation on glucose, mannose, galactose, xylose,
sucrose, cellobiose, and lactose (Table 1). The optimum
temperature and pH for growth and fermentation were 50°C
and 5.0, respectively (Fig. 1). The strain showed maximum
cell-mass yield of 43 § 0.05% on xylose and maximum
ethanol yield of 50.5 § 0.5% on sucrose. The arabinose
was used only for growth by the strain.

In the growth study, the yeast Kluyveromyces sp.
IIPE453 produced a cell-mass concentration of 3.5 § 0.2 g l¡1

besides and ethanol concentration of 4.9 § 0.3 g l¡1 on
glucose, whereas the strain could not produce ethanol as

well as xylitol on xylose aerobically, as shown in Fig. 2a, b.
The maximum cell-mass concentration on xylose was
7.9 § 0.3 g l¡1 in 24 h. The cell-mass yield YX/S on glucose
and xylose was obtained with 0.2 § 0.1 g cells g¡1 glucose
and 0.43 § 0.1 g cells g¡1 xylose, respectively, at 50°C.

Table 1 Cell mass and ethanol yields on diVerent sugars by Kluyveromyces sp. IIPE453 at 50°C

Sugar 
substrate

Sugar 
consumed (g l¡1)

Dry cell 
weight (g l¡1)

Biomass 
yield (% YX/S)

Sugar 
consumed (g l¡1)

Ethanol conc. 
(g l¡1)

Ethanol 
yield (% YP/S)

Glucose 10 § 0.1 2 § 0.1 20 § 0.1 20 § 0.1 9.2 § 0.2 46 § 0.7

Galactose 10 § 0.1 2 § 0.3 20 § 0.3 20 § 0.2 9.4 § 0.2 47 § 0.5

Mannose 10 § 0.1 1.2 § 0.2 12 § 0.2 20 § 0.2 6.6 § 0.4 33 § 1.6

Xylose 10 § 0.1 4.3 § 0.1 43 § 0.05 6.5 § 0.5 0.7 § 0.06 10.7 § 0.01

Arabinose 2.6 § 0.2 0.15 § 0.02 6.1 § 0.3 0 0 –

Sucrose 10 § 0.1 1.3 § 0.05 13 § 0.4 20 § 0.1 10.1 § 0.2 50.5 § 0.5

Lactose 4.4 § 0.1 0.98 § 0.06 22.2 § 0.8 10.2 § 0.3 1.7 § 0.2 16.6 § 1.4

Cellobiose 5.6 § 0.2 2 § 0.1 35.5 § 0.5 9.4 § 0.4 0.4 § 0.05 4.4 § 0.2

RaYnose 5.5 § 0.2 1.9 § 0.1 34.5 § 0.5 5.3 § 0.1 0.6 § 0.08 11.3 § 1.2

Fig. 1 SpeciWc growth rate and ethanol production rate of Kluyver-
omyces sp. IIPE453 at a diVerent temperatures and b pH: Wlled circle
speciWc growth rate; Wlled square speciWc production rate
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The yeast Kluyveromyces sp. IIPE453 could ferment a
glucose concentration of 200 g l¡1 at 50°C with 85% sugar
conversion to ethanol. The maximum ethanol concentration
was 82 § 0.5 g l¡1 on initial glucose concentration of
200 g l¡1 with ethanol yield of 46 § 0.2% and productivity
1.71 § 0.1 g l¡1 h¡1 in 48 h. The ethanol productivity
increased 1.85 § 0.1 and 1.93 § 0.1 g l¡1 h¡1 when initial
glucose concentrations were decreased 100 and 50 g l¡1,
respectively (Fig. 3a). The strain could ferment xylose at
diVerent concentrations of 20–40 g l¡1 at 50°C. The
maximum ethanol concentration of 1.75 § 0.05 g l¡1

with ethanol yield of 10 § 0.1% and productivity of
0.025 § 0.005 g l¡1 h¡1 and maximum xylitol concentra-
tion of 11.5 § 0.4 g l¡1 with xylitol yield of 65 § 2% and
productivity of 0.17 § 0.02 g l¡1 h¡1 were obtained
(Fig. 3b).

In another study, the strain Kluyveromyces sp. IIPE453
could ferment the glucose and xylose mixture, achieving
ethanol concentration of 38 § 0.5 g l¡1 with ethanol yield
of 75 § 0.9% of theoretical yield on total consumed sugar,
and productivity of 0.79 § 0.01 g l¡1 h¡1 and xylitol
concentration of 14.5 § 0.2 g l¡1 with xylitol yield of
65.6 § 1.2% on xylose consumed and productivity of
0.3 § 0.01 g l¡1 h¡1 at 50°C (Fig. 4). In a continuous pro-
cess of cell recycling at the dilution rate of 0.1 h¡1, the
steady state was reached after 42 h. The maximum ethanol
concentration of 30.8 § 6.2 g l¡1 with ethanol yield of
78.2 § 3.8% of theoretical yield on total sugar consumed
and productivity of 3.1 § 0.6 g l¡1 h¡1 and xylitol concen-
tration of 7.35 § 3.3 g l¡1 with xylitol yield of 63 § 3% on
xylose consumed and productivity of 0.75 § 0.35 g l¡1 h¡1

were achieved in steady state (Fig. 5).

Discussion

Table 1 shows the cell-mass yield and ethanol yield on
diVerent sugars by newly isolated yeast Kluyveromyces sp.
IIPE453. The maximum cell-mass yield could be achieved
on xylose, whereas the yield was low on arabinose. The
yield on cellobiose was comparable with xylose. The

hexose sugars, such as glucose, mannose, galactose,
sucrose, and lactose, showed the lower yield of cell mass
due to the formation of ethanol and other metabolites, such
as acetaldehyde, acetic acid, lactic acid, acetone, ethyl ace-
tate, and higher alcohols during growth [8, 18]. The maxi-
mum ethanol yield was achieved on sucrose, which was

Fig. 2 Growth of Kluyveromy-
ces sp. IIPE453 at 50°C on a glu-
cose and b xylose: Wlled square 
glucose concentration, Wlled 
triangle xylose concentration, 
Wlled circle dry cell weight 
(DCW), open square ethanol 
concentration
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around 50.5 § 0.5% without any growth at 50°C, whereas
Fleming et al. [9] reported 35% ethanol yield with 0.7 h¡1

speciWc growth rate on sucrose by Kluyveromyces marxi-
anus IMB3 at 45°C. The ethanol yield on hexoses, such as
glucose and galactose, was 46 § 0.7% and 47 § 0.5%,
respectively, whereas on mannose, the yield was
33 § 1.6%. The yeast could also produce the ethanol on
cellobiose with low yield and low sugar consumption. The
strain showed the ethanol fermentation on xylose but could
not ferment arabinose.

The strain has the ability to convert hexose sugars to cell
mass as well as ethanol during the growth phase. This abil-
ity shows that the yeast follows the Crabtree rather than the
Pasteur eVect [5]. The yeast Saccharomyces cerevisiae also
follows Crabtree [23]. Figure 2 shows the growth and

ethanol production simultaneously with speciWc growth
rate of 0.23 h¡1 on glucose, whereas on xylose, the cells
grew with speciWc growth rate of 0.34 h¡1 without produc-
ing ethanol in aerobic conditions. Banat et al. [5] reported
speciWc growth rate of Kluyveromyces marxianus IMB3
0.63 and 0.19 h¡1 on glucose and xylose, respectively, in
batch fermentation at 50°C.

The yeast Kluyveromyces sp. IIPE453 could ferment the
glucose concentration 200 g l¡1 within 48 h, achieving an
ethanol yield of 90% of theoretical yield, with productivity
of 1.71 § 0.1 g l¡1 h¡1 and speciWc productivity of
0.38 § 0.1 g g¡1 h¡1 in a batch process at 50°C (Fig. 3a),
whereas the maximum ethanol productivity of
1.93 § 0.1 g l¡1 h¡1 was obtained on initial glucose con-
centration of 50 g l¡1. The maximum ethanol concentration
after 48 h was 8.2 § 0.05% (w/v) on the initial glucose
concentration of 200 g l¡1 indicates high glucose and etha-
nol tolerance of the strain at 50°C. Banat et al. [3] reported
the maximum ethanol concentration of 7.2% (w/v) with
ethanol yield of 98% of theoretical yield and ethanol pro-
ductivity 1.71 g l¡1 h¡1 on 140 g l¡1 glucose by Kluyver-
omyces marxianus IMB2 at 45°C, whereas there was an
ethanol concentration of 5.5% (w/v) with ethanol yield of
98% of theoretical yield and ethanol productivity of
1.31 g l¡1 h¡1 at 50°C by the same strain.

In fermentation with xylose, the maximum xylose con-
centration of 17.65 § 0.05 g l¡1 could be used. The yeast
could ferment the xylose to an ethanol concentration of
1.75 § 0.05 g l¡1 with ethanol yield of 20 § 0.3% of theo-
retical and ethanol productivity of 0.025 § 0.005 g l¡1 h¡1,
as well as xylitol concentration of 11.5 § 0.4 g l¡1 with
xylitol yield of 65 § 2% and xylitol productivity of
0.17 § 0.02 g l¡1 h¡1 at 50°C, as shown in Fig. 3b. Wilkins
et al. [32] reported maximum xylose consumption of
13.61 g l¡1 in 96 h with ethanol productivity of
0.02 g l¡1 h¡1 and xylitol productivity of 0.08 g l¡1 h¡1

using Kluyveromyces marxianus IMB4 at 40°C. In
another study, Yablochkova et al. [33] reported ethanol
productivity of 0.315 g l¡1 h¡1 on glucose and ethanol
productivity of 0.0033 g l¡1 h¡1 and xylitol productivity of
0.105 g l¡1 h¡1 on xylose by Kluyveromyces marxianus.
No signiWcant change was observed during fermentation in
the cell-mass concentration, which means the ethanol for-
mation is non-growth associated when using Kluyveromy-
ces sp. IIPE453.

Figure 4 shows the ethanol fermentation in batch on the
mixture of glucose and xylose simultaneously by Kluyver-
omyces sp. IIPE453 at 50°C. The glucose consumption
rate (3.8 § 0.05 g h¡1) was higher than that of xylose
(0.73 § 0.03 g h¡1). Glucose was consumed within 28 h,
but the total xylose was consumed in 48 h. The strain was
able to use glucose and xylose simultaneously, which has
not thus far been reported when using Kluyveromyces sp.

Fig. 4 Batch fermentation on glucose and xylose mixture by Kluyver-
omyces sp. IIPE453 at 50°C: Wlled square glucose concentration, Wlled
triangle xylose concentration, open square ethanol concentration,
open triangle xylitol concentration
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In a continuous process with recycling the cells at 50°C
after achieving the steady state, the maximum ethanol
concentration of 37 § 0.1 g l¡1 with ethanol yield of
82.2 § 0.2% of theoretical yield could be produced with
volumetric productivity of 3.7 § 0.01 g l¡1 h¡1 and speciWc
productivity of 0.8 § 0.03 g g¡1 h¡1, besides 65.6 § 0.2%
xylitol yield on consumed xylose basis with xylitol produc-
tivity of 1.1 § 0.08 g l¡1 h¡1 and speciWc productivity of
0.24 § 0.03 g g¡1 h¡1 (Fig. 5). Cell concentration was
declining due to partial cell recycling in the absence of any
cell growth. However, the speciWc ethanol productivity
(0.6–0.8 g g¡1 h¡1) remained the same during fermentation,
indicating the high stability of cells to 90 h.

Conclusions

The new isolated thermotolerant yeast strain Kluyveromy-
ces sp. IIPE453 (MTCC 5314) has shown the consumption
of a wide range of sugars, which are the major constituents
of lignocellulosic biomass either for growth or ethanol fer-
mentation. The strain showed the simultaneous uptake of
glucose and xylose for ethanol and xylitol production with
high productivity. It also showed an ethanol tolerance up to
8.2% (w/v). The study revealed that the characteristics of
the yeast strain allow it to grow eYciently on xylose and
ferment glucose eYciently to ethanol. Such characteristics
have the potential to develop a bioprocess in which the
xylose part of the lignocellulosic biomass can be used to
grow the strain as well as produce xylitol, and the glucose
portion can be used for ethanol production.
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